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Abstract

In this paper, the dynamic behavior of a dry friction oscillator subjected to simultaneous self and external
excitations is studied. The dry friction in the system follows the classical Coulomb’s law, and the external
excitation consists of two harmonic forces with different frequencies. The focus of the paper is laid on
bifurcation analysis to gain insight into the influence of the two-frequency excitation upon the qualitative
features of system dynamics. Numerical simulations are performed and the simulation results are visualized
by means of bifurcation diagrams, Poincar!e sections and Lyapunov exponents. New and interesting
conclusions are reached from the study. It is shown that small excitation frequencies and amplitudes tend to
cause chaos in the system, whereas large excitation amplitudes can induce only periodic motions.
Furthermore, it is found that the probability of the occurrence of periodic motions increases, as the ratio
between the two excitation frequencies increases.
r 2003 Elsevier Ltd. All rights reserved.

1. Introduction

The vibration of dry friction damped systems has been actively studied for many years, not only
because dry friction appears frequently in everyday life as well as in engineering systems, but also
because it poses challenges to researchers as a discontinuous non-linearity. Really complex
dynamics, e.g. chaos, can be exhibited from dry friction damped systems even in its simplest form,
Coulomb damping.

Among the earliest research on dry friction oscillators is that of Den Hartog [1], where an exact
solution was found for the steady state vibration of an SDOF harmonically excited system with
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dry friction. He also performed several experimental tests to verify his solutions. Since then, much
work has been done in this field. Pierre et al. [2] presented a multi-harmonic frequency domain
analysis of Coulomb damped systems with one and two d.o.f., using an incremental harmonic
balance method. Later, Feeny and Moon [3] investigated the geometry of chaotic attractors for
dry friction oscillators experimentally and numerically. In their study, three friction laws were
examined. In Mueller’s paper [4], an analytical method of calculating Lyapunov exponents for
non-linear dynamic systems with discontinuity was proposed and was applied to the analysis of a
Coulomb damped oscillator. Oestreich et al. [5] employed a one-dimensional map to discuss
bifurcation and stability of a non-smooth friction oscillator on a moving base, and the map
approach was shown to be an efficient and illustrative way to carry out such analysis. The
response of a dry friction oscillator on a moving base was also analyzed by Andreaus and Casini
[6], with emphasis laid on the influence of the base speed and the friction modelling on the system
response. Using a smoothing procedure, Van De Vrande et al. [7] computed both stable and
unstable periodic solutions for the stick-slip vibration of an autonomous system with dry friction.
More recently, the work of Galvanetto [8,9] dealt with discontinuous bifurcations in a two-block
system affected by dry friction, as well as numerical techniques to compute the Lyapunov
exponents of discontinuous maps implicitly defined.

In all of the research above, either no excitation or only a single harmonic excitation was
assumed. In practice, however, multi-excitations can exist in various vibration systems with dry
friction, and they may have a dramatic effect on the system’s dynamic characteristics. To address
the lack of research on this issue, the authors [10] studied the vibration of a dry friction oscillator
subjected to two harmonic disturbing forces with different frequencies and determined periodic
solutions for both non-stick and stick-slip motions. In this paper, we further our study into the
chaotic aspects of two-frequency oscillations with dry friction. The dynamics of a Coulomb
friction oscillator subjected to two harmonic excitations on a moving belt with constant velocity is
investigated, with focus laid on bifurcation analysis to illustrate the influence of the two-frequency
excitation upon the system behavior. It is found that small excitation frequencies and amplitudes
tend to yield chaotic motions. Furthermore, as the ratio between the two excitation frequencies
increases, less likely chaotic motions will occur.

2. System description

The system under investigation is shown in Fig. 1, where a mass m is connected to a fixed
support via a linear spring with stiffness k and a viscous damper with damping coefficient c; and is
sliding on a moving belt with constant velocity n0: The mass is subjected to two harmonic
excitations with the same amplitude P but different frequencies o1 and o2: In addition, dry
friction can occur between the mass and the belt. In the study, the following assumptions are
made:

1. The two excitation frequencies are proportional to each other in such a way that

o2

o1
� n ¼

M

N
; ð1Þ
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where M and N are incommensurable integers (If M=N ¼ 1; the case degenerates to the single
excitation case).

2. The dry friction between the mass and the belt follows Coulomb’s friction law characterized by
a static friction coefficient ms and a smaller kinetic friction coefficient mk:

The equation of motion for the oscillator is given by

m .x þ c ’x þ kx ¼ �mFN sgnð ’x � v0Þ þ P coso1t þ P coso2t; ð2Þ

where x denotes the displacement of the mass, FN is the normal force in the contact area, and

m ¼
mk ð ’xav0Þ;

ms ð ’x ¼ v0Þ;

(
sgnðyÞ

¼ 1 ðy > 0Þ;

A½�1; 1� ðy ¼ 0Þ; yAR;

¼ �1 ðyo0Þ:

8><
>: ð3; 4Þ

By defining the quantities

o0 ¼

ffiffiffiffi
k

m

r
; t ¼ o0t; l ¼

c

mo0
; u0 ¼

P

mo2
0

; xv ¼
v0

o0
;

xf ¼
mFN

k
¼

xfk ð ’xav0Þ

xfs ð ’x ¼ v0Þ;

(
Z ¼

o1

o0
;

ð5Þ

Eq. (2) can be normalized as

x00 þ lx0 þ x ¼ �xf sgnðx0 � xvÞ þ u0 cosðZtÞ þ u0 cosðnZtÞ ð6Þ

in which the prime indicates differentiation with respect to the non-dimensional time t:

3. Dynamic analysis

3.1. Solutions for slip and stick modes

Since Eq. (6) is piecewise linear, an analytical solution can be formulated for the slip mode
ðx0axvÞ and the stick mode ðx0 ¼ xvÞ; respectively, with the initial conditions

xðt0Þ ¼ x0; x0ðt0Þ ¼ x0
0: ð7Þ
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Fig. 1. Model of a dry friction oscillator.
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For the slip mode, the solution is obtained:

x tð Þ ¼8xfk þ e�lðt�t0Þ=2 C1 cos pðt� t0Þ þ C2 sin pðt� t0Þ½ �

þ u0b1 cosðZt� y1Þ þ u0b2 cosðnZt� y2Þ; ð8Þ

where

C1 ¼ x07xfk � u0b1 cosðZt0 � y1Þ � u0b2 cosðnZt0 � y2Þ; ð9Þ

C2 ¼
1

p
x0
0 þ

l
2

C1 þ u0b1Z sinðZt0 � y1Þ þ u0b2nZ sinðnZt0 � y2Þ
� 	

; ð10Þ

p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� l2=4

q
; b1 ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� Z2Þ2 þ l2Z2

q
; b2 ¼ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1� n2Z2Þ2 þ l2n2Z2

q
;

y1 ¼ tan�1 lZ
1� Z2

; y2 ¼ tan�1 lnZ
1� n2Z2

: ð11Þ

It is noted that the upper and lower part of the compound signs 8 and 7 in Eqs. (8) and (9)
corresponds to the case of x0 > xv and of x0oxv; respectively. For the stick mode, the solution
simply becomes

xðtÞ ¼ x0 þ xvðt� t0Þ: ð12Þ

The final state of one mode is implemented as the initial state of the other. The state of
transition from the slip mode to the stick mode and vice versa is determined by the following
equations, respectively:

xv ¼ e�lt=2pð�C1 sin ptþ C2 cos ptÞ �
l
2
e�lt=2ðC1 cos ptþ C2 sin ptÞ

� u0b1Z sin½Zðtþ t0Þ � y1� � u0b2nZ sin½nZðtþ t0Þ � y2�; ð13Þ

j � lxv � x0 � xvðt� t0Þ þ u0 cosðZtÞ þ u0 cosðnZtÞj ¼ xfs: ð14Þ

Since the above two equations are transcendental and an explicit solution for t is impossible, a
numerical procedure is needed to solve t:

3.2. Phase space and Poincar!e section

The two external harmonic excitations on the system can be regarded as one non-harmonic, yet
periodic excitation whose circular frequency is calculated as

o ¼
Z
N
: ð15Þ

Thus, it is possible to construct a three-dimensional phase space to study the dynamics of the
system. By introducing

j � otmod 2pA½0; 2pÞ ð16Þ
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we define a phase space in cylindrical co-ordinates (r; y; z) as

r ¼ x; y ¼ j; z ¼ x0: ð17Þ

In the above phase space, two-dimensional Poincar!e sections can also be defined:

fðx; x0Þjj ¼ j0A½0; 2pÞg; ð18Þ

where j0 is an arbitrary real constant.

3.3. One-point map and Lyapunov exponents

One efficient way to study dry friction oscillators is to introduce maps between different points
in the state space so that the dimension of the system is reduced. Naturally, one can choose stick-
to-slip or slip-to-stick transition states as mapping points as they correspond to the discontinuity
of dry friction. In this study, the stick-to-slip transition states are considered. Let xn be the nth
stick-to-slip position of the mass and jn be its corresponding phase angle, as defined in Eq. (16).
The following relationship between xn and jn can be derived

xn ¼ �lxv8xfs þ u0 cosðNjnÞ þ u0 cosðMjnÞ; ð19Þ

in which the upper and lower part of the compound sign 8 corresponds to the entered slip mode
where x0 > xv and x0oxv; respectively. With xn; bifurcation analysis can be carried out to study the
influence of bifurcation parameters on the system dynamics. Based on jn; the following one-point
map is introduced, which was originally proposed in Ref. [5] for the single-excitation case:

H : jn/HðjnÞ ¼ jnþ1 ðn ¼ 1; 2;yÞ: ð20Þ

The above one-dimensional map allows a simple determination of the Lyapunov exponent L of
the system, cf. Ref. [11]:

L ¼ lim
n-N

1

n

Xn�1

p¼0

lnjH 0ðjpÞj: ð21Þ

It should be pointed out that with the system reduced to a one-dimensional map H; two
Lyapunov exponents are lost. One of them is zero corresponding to a tangential perturbation
direction, and the other equals minus infinity due to the two-dimensionality in the stick mode.

3.4. Computational method

Since analytical solutions for both slip and stick modes of the system are available, the
computation errors arise solely from the detection of discontinuity, i.e., slip-to-stick or stick-to-
slip transition. Therefore, the computation of the precise time value when the discontinuity occurs
is of crucial importance. In our approach, we evaluate appropriate switch functions to judge if a
transition happens. Six different time steps are adopted to make sure that the value of the
transition time is precise to the order 10�12, and thereby the accuracy of the results is guaranteed.
To illustrate this procedure, a flow diagram for the detection of slip-to-stick time is shown
schematically in Fig. 2.
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4. Numerical results

The numerical study in this section concentrates on bifurcation analysis to illustrate the
influence of the system’s parameters on its dynamic behavior under various ratios between the two
excitation frequencies, i.e., M=N: The bifurcation parameters adopted are: the ratio between
frequencies o1 and o0; namely Z; and the amplitude of the excitations, i.e., u0: The basic system
parameters, unless otherwise specified as bifurcation parameters, are assumed to take the values

l ¼ 0; xfk ¼ 2:5; xfs ¼ 4:0; xv ¼ 1; u0 ¼ 0:25; Z ¼ 2
3
: ð22Þ

In what follows, numerical results are presented in two subsections corresponding to
bifurcation parameters Z and u0; respectively.

4.1. Bifurcation analysis with Z as parameter

In this subsection, bifurcation diagrams of the stick-to-slip transition displacement x are shown
as a function of the parameter Z; with different excitation frequency ratios, namely M=N: The
figures reflect the steady motion of the mass since only post-transient points are plotted. Fig. 3(a)
displays the case where M=3 and N=5. For Z less than 0.75, the motion is basically chaotic.
With larger values of Z; one can distinguish multiple periodic solutions, of which the 3- and
5-period ones are distinct. From one of the chaos bands in Fig. 3(a) we choose the parameter
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Fig. 2. Flow diagram for detecting slip-to-stick transition time.

G. Cheng, J.W. Zu / Journal of Sound and Vibration 275 (2004) 591–603596



Z ¼ 2:304 and examine its corresponding Poincar!e section and Lyapunov exponent in Fig. 4. The
Poincar!e section (j ¼ 0) in Fig. 4(a) consists of line segments at irregular intervals, essentially
dissimilar to the plot of finite points and of closed orbits which corresponds to periodic and
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Fig. 3. Stick-to-slip displacement x vs. Z: (a) M ¼ 3; N ¼ 5; (b) M ¼ 1; N ¼ 3; (c) M ¼ 1; N ¼ 9; (d) M ¼ 5; N ¼ 1;
(e) M ¼ 9; N ¼ 1; (f) M ¼ 1; N ¼ 1:
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quasiperiodic motions, respectively. Hence, the Poincar!e section indicates chaos. In addition, the
Lyapunov exponent converges to a positive number 0.051 along the increased number of iterates,
as seen from Fig. 4(b). As well known, positive Lyapunov exponents are one defining
characteristic of chaos. It is believed that the presence of chaos in the system is due to the
difference between the static friction coefficient and the kinetic friction coefficient, since it was
proven in Ref. [4] that chaos is impossible when the kinetic friction coefficient is equal to the static
friction coefficient.

Fig. 3(b) illustrates the stick-to-slip transition displacement x versus Z; where M and N are set
to 1 and 3, respectively. A similar structure is demonstrated in comparison with Fig. 3(a): chaotic
motions occupy the small Z range while periodic windows appear with the increase of Z: For this
case, however, the obvious periodic solutions are of 1- and 3-period. A jump phenomenon in the
1-period solution is also noticed at Z ¼ 2:43: The enlargement of a narrow portion of Fig. 3(b),
where ZA½1:7975; 1:810�; reveals the interesting phenomenon, see Fig. 5, that the periodic windows
take on highly similar patterns. Particularly, the periodic window becomes narrower from right to
left, with the periodic number increased by 3 consecutively.

Figs. 3(c)–(e) show the cases of M=N equal to 1
9
; 5
1
and 9

1
; respectively. Apparently, all these plots

comply with the aforementioned structure rule. Moreover, a trend in the influence of M=N on the
system dynamic behavior is discovered from these figures together with the previous ones. It is
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Fig. 4. (a) Poincar!e section and (b) Lyapunov exponent with M ¼ 3; N ¼ 5 and Z ¼ 2:304:
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observed that as M=N is increased from 1
9
to 9

1
; less chaotic motions occur and more periodic

motions take place, with respect to the parameter Z:
With M ¼ N ¼ 1; the two-frequency excitation on the system becomes a single-frequency one.

The numerical results for this special case are displayed in Fig. 3(f). As expected, the proportion of
chaotic solutions of the system, according to the parameter Z; lies between those for the cases of
M=N > 1 and M=No1: In addition, the region with Z lying between 1.955 and 1.980 of Fig. 3(f) is
enlarged in Fig. 6(a), where a period-doubling route to chaos is manifested. The corresponding
Lyapunov exponents are presented in Fig. 6(b), which, together with Figs. 3(f) and 6(a), shows a
very good agreement with the results from Ref. [5], where the single-excitation case was studied.

4.2. Bifurcation analysis with u0 as parameter

The numerical results for the system behavior depending on the excitation amplitude u0 under
various M=N are given in Figs. 7–9. Fig. 7(a) illustrates the stick-to-slip displacement x against u0

with M ¼ 4 and N ¼ 17: It is shown that for small values of u0 only chaotic solutions can be
distinguished while for larger u0 typical windows appear. This is similar to the previous situations
with Z as parameter. What’s different, however, is that when u0 becomes large enough, only
periodic motions happen and the periodic number, 17 in this case, coincides with N: Another
interesting phenomenon is found that in the range of small u0 where chaos occurs, the upper and
lower limit values of x seem to grow linearly with the increase of u0: In Fig. 8, the chaotic solution
at u0 ¼ 0:6 of Fig. 7(a) is identified with the aid of Poincar!e section and Lyapunov exponent plots.
Clearly, both the Poincar!e section and the Lyapunov exponent imply chaos.

Figs. 7(b)–(d) correspond to the cases of M=N equal to 1
9
; 3
1
and 9

1
; respectively. All these plots

verify the characteristics mentioned above: (1) as u0 increases from zero, chaotic motions appear
first, followed by alternate occurrence of periodic motions and chaos, except for the case M=N ¼
9
1
where periodic solutions exist for the full range of u0; (2) when u0 is large enough, only periodic

solutions occur whose periodic number is determined by N; and (3) in the range of small u0 where
chaos occurs, the limit values of x are linear functions of u0: Furthermore, comparing Figs. 7(a)–(d)
leads to the conclusion that the bigger M=N is the larger percentage periodic motions take up the
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Fig. 5. Enlargement of part of Fig. 3(b) where Z lies in [1.7975, 1.810].
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scope of u0: As a matter of fact, if M=N becomes big enough, such as 9
1
; only periodic solutions

exist with respect to the parameter u0:
The special case of M ¼ N ¼ 1 is plotted in Fig. 7(e), which obviously obeys all the

aforementioned rules. The enlargement of one periodic window located at u0A½0:145; 0:152�
demonstrates a unique pattern, as shown in Fig. 9.

5. Conclusions

The dynamic behavior of a Coulomb friction oscillator subjected to two-frequency excitations
on a moving belt with constant velocity has been elaborated. The emphasis has been laid on
bifurcation analysis to examine the influence of the system’s parameters on its dynamics.
Numerical simulations have been carried out and the simulation results suggest the following
conclusions:

1. For both bifurcation parameters corresponding to the excitation amplitude and the excitation
frequency, respectively, for small values only chaotic solutions can be distinguished, while for
larger values periodic windows appear among chaos bands. Physically speaking, small
excitation frequencies and amplitudes tend to yield chaotic motions.
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Fig. 6. (a) Enlargement of part of Fig. 3(f) and (b) the corresponding Lyapunov exponents.
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Fig. 7. Stick-to-slip displacement x vs. u0: (a) M ¼ 4; N ¼ 17; (b) M ¼ 1; N ¼ 9; (c) M ¼ 3; N ¼ 1; (d) M ¼ 9; N ¼ 1;
(e) M ¼ 1; N ¼ 1:
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2. For certain range of small excitation amplitudes where chaos occurs, the limit values
of the stick-to-slip displacement depend linearly on the excitation amplitude. Moreover,
as long as the excitation is sufficiently large, only periodic motion can happen, which
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Fig. 8. (a) Poincar!e section and (b) Lyapunov exponent with M ¼ 4; N ¼ 17 and u0 ¼ 0:6:

Fig. 9. Enlargement of part of Fig. 7(e) where u0 lies in [0.145, 0.152].
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in turn leads to the conclusion that chaos can be caused by only relatively weak external
excitations.

3. It is found that the ratio between the two excitation frequencies, namely M/N, has a significant
impact upon the system dynamics. With respect to both bifurcation parameters, as M/N is
increased, more likely periodic motions will occur than chaotic motions. In addition, when the
excitation is large enough to induce only periodic solutions, the corresponding solutions are of
N-period.
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